Orbital shrinking: Theory and applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital shrinking: Theory and applications

We present a method, based on formulation symmetry, for generating Mixed-Integer Linear Programming (MILP) relaxations with fewer variables than the original symmetric MILP. Our technique also extends to convex MINLP, and some nonconvex MINLP with a special structure. We showcase the effectiveness of our relaxation when embedded in a decomposition method applied to two important applications (m...

متن کامل

Orbital Shrinking

Symmetry plays an important role in optimization. The usual approach to cope with symmetry in discrete optimization is to try to eliminate it by introducing artificial symmetry-breaking conditions into the problem, and/or by using an ad-hoc search strategy. In this paper we argue that symmetry is instead a beneficial feature that we should preserve and exploit as much as possible, breaking it o...

متن کامل

FUZZY SOFT SET THEORY AND ITS APPLICATIONS

In this work, we define a fuzzy soft set theory and its related properties. We then define fuzzy soft aggregation operator that allows constructing more efficient decision making method. Finally, we give an example which shows that the method can be successfully applied to many problems that contain uncertainties.

متن کامل

Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods

Orbital shrinking is a newly developed technique in the MIP community to deal with symmetry issues, which is based on aggregation rather than on symmetry breaking. In a recent work, a hybrid MIP/CP scheme based on orbital shrinking was developed for the multi-activity shift scheduling problem, showing significant improvements over previous pure MIP approaches. In the present paper we show that ...

متن کامل

Orbital-corrected orbital-free density functional theory.

A new implementation of density functional theory (DFT), namely orbital-corrected orbital-free (OO) DFT, has been developed. With at most two non-self-consistent iterations, OO-DFT accomplishes the accuracy comparable to fully self-consistent Kohn-Sham DFT as demonstrated by its application on the cubic-diamond Si and the face-centered-cubic Ag systems. Our work provides a new impetus to furthe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2017.01.015